193 research outputs found

    The Evolving Role of Antifungal Susceptibility Testing

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98278/1/phar1233.pd

    KALwEN+: Practical Key Management Schemes for Gossip-Based Wireless Medical Sensor Networks

    Get PDF
    The constrained resources of sensors restrict the design of a key management scheme for wireless sensor networks (WSNs). In this work, we first formalize the security model of ALwEN, which is a gossip-based wireless medical sensor network (WMSN) for ambient assisted living. Our security model considers the node capture, the gossip-based network and the revocation problems, which should be valuable for ALwEN-like applications. Based on Shamir's secret sharing technique, we then propose two key management schemes for ALwEN, namely the KALwEN+ schemes, which are proven with the security properties defined in the security model. The KALwEN+ schemes not only fit ALwEN, but also can be tailored to other scalable wireless sensor networks based on gossiping

    Weak percolation on multiplex networks

    Get PDF
    peer-reviewedBootstrap percolation is a simple but nontrivial model. It has applications in many areas of science and has been explored on random networks for several decades. In single-layer (simplex) networks, it has been recently observed that bootstrap percolation, which is defined as an incremental process, can be seen as the opposite of pruning percolation, where nodes are removed according to a connectivity rule. Here we propose models of both bootstrap and pruning percolation for multiplex networks. We collectively refer to these two models with the concept of "weak" percolation, to distinguish them from the somewhat classical concept of ordinary ("strong") percolation. While the two models coincide in simplex networks, we show that they decouple when considering multiplexes, giving rise to a wealth of critical phenomena. Our bootstrap model constitutes the simplest example of a contagion process on a multiplex network and has potential applications in critical infrastructure recovery and information security. Moreover, we show that our pruning percolation model may provide a way to diagnose missing layers in a multiplex network. Finally, our analytical approach allows us to calculate critical behavior and characterize critical clusters.PUBLISHEDpeer-reviewe

    Adaptable Security in Wireless Sensor Networks by Using Reconfigurable ECC Hardware Coprocessors

    Get PDF
    Specific features of Wireless Sensor Networks (WSNs) like the open accessibility to nodes, or the easy observability of radio communications, lead to severe security challenges. The application of traditional security schemes on sensor nodes is limited due to the restricted computation capability, low-power availability, and the inherent low data rate. In order to avoid dependencies on a compromised level of security, a WSN node with a microcontroller and a Field Programmable Gate Array (FPGA) is used along this work to implement a state-of-the art solution based on ECC (Elliptic Curve Cryptography). In this paper it is described how the reconfiguration possibilities of the system can be used to adapt ECC parameters in order to increase or reduce the security level depending on the application scenario or the energy budget. Two setups have been created to compare the software- and hardware-supported approaches. According to the results, the FPGA-based ECC implementation requires three orders of magnitude less energy, compared with a low power microcontroller implementation, even considering the power consumption overhead introduced by the hardware reconfiguratio

    High-purity germanium detector ionization pulse shapes of nuclear recoils, gamma interactions and microphonism

    Full text link
    Nuclear recoil measurements with high-purity Germanium detectors are very promising to directly detect dark matter candidates. The main background sources in such experiments are natural radioactivity and microphonic noise. Digital pulse shape analysis is an encouraging approach to reduce the background originating from the latter. To study the pulse shapes of nuclear recoil events we performed a neutron scattering experiment, which covered the ionization energy range from 20 to 80 keV. We have measured ionization efficiencies as well and found an excellent agreement with the theory of Lindhard. In a further experiment we measured pulse shapes of a radioactive gamma-source and found no difference to nuclear recoil pulse shapes. Pulse shapes originating from microphonics of a HPGe-detector are presented for the first time. A microphonic noise suppression method, crucial for dark matter direct detection experiments, can therefore be calibrated with pulse shapes from gamma-sources.Comment: 11 pages (latex) including 6 postscript figures and 2 table

    On the Role of Expander Graphs in Key Predistribution Schemes for Wireless Sensor Networks

    Get PDF
    Providing security for a wireless sensor network composed of small sensor nodes with limited battery power and memory can be a non-trivial task. A variety of key predistribution schemes have been proposed which allocate symmetric keys to the sensor nodes before deployment. In this paper we examine the role of expander graphs in key predistribution schemes for wireless sensor networks. Roughly speaking, a graph has good expansion if every `small\u27 subset of vertices has a `large\u27 neighbourhood, and intuitively, expansion is a desirable property for graphs of networks. It has been claimed that good expansion in the product graph is necessary for `optimal\u27 networks. We demonstrate flaws in this claim, argue instead that good expansion is desirable in the intersection graph, and discuss how this can be achieved. We then consider key predistribution schemes based on expander graph constructions and compare them to other schemes in the literature. Finally, we propose the use of expansion and other graph-theoretical techniques as metrics for assessing key predistribution schemes and their resulting wireless sensor networks
    • …
    corecore